The maximum spectral radius of irregular bipartite graphs

نویسندگان

چکیده

A bipartite graph is subcubic if it an irregular with maximum degree three. In this paper, we prove that the asymptotic value of spectral radius over graphs order n 3 − Θ ( π 2 ) . Our key approach taking full advantage eigenvalues a certain tridiagonal matrix, due to Willms [SIAM J. Matrix Anal. Appl. 30 (2008) 639–656]. Moreover, for large degree, i.e., at least ⌊ / ⌋ , characterize radius. For general present upper bound on in terms and degree.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Spectral Radius and the Maximum Degree of Irregular Graphs

Let G be an irregular graph on n vertices with maximum degree ∆ and diameter D. We show that ∆ − λ1 > 1 nD , where λ1 is the largest eigenvalue of the adjacency matrix of G. We also study the effect of adding or removing few edges on the spectral radius of a regular graph. 1 Preliminaries Our graph notation is standard (see West [22]). For a graph G, we denote by λi(G) the i-th largest eigenval...

متن کامل

On the distance spectral radius of bipartite graphs

Article history: Received 11 June 2011 Accepted 29 July 2011 Available online 27 August 2011 Submitted by R.A. Brualdi AMS classification: 05C50 15A18

متن کامل

On the spectral radius of bipartite graphs with given diameter

Article history: Received 17 March 2008 Accepted 9 October 2008 Available online 3 December 2008 Submitted by R.A. Brualdi AMS classification: 05C50

متن کامل

Spectral radius and maximum degree of connected graphs

Given a connected irregular graph G of order n, write μ for the largest eigenvalue of its adjacency matrix, ∆ for its maximum degree, andD for its diameter. We prove that ∆− μ > 1 (D + 2)n and this bound is tight up to a constant factor. This improves previous results of Stevanović and Zhang, and extends a result of Alon and Sudakov.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 2023

ISSN: ['1090-2074', '0196-8858']

DOI: https://doi.org/10.1016/j.aam.2022.102433